Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Robot AI ; 9: 999392, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36304793

RESUMEN

We present EMBUR-EMerita BUrrowing Robot-the first legged robot inspired by the Pacific mole crab, Emerita analoga, capable of burrowing vertically downward. We choose Emerita analoga as a model organism for its rapid downward burrowing behaviors, as it is four times as fast as the most rapid bivalve mollusk. Vertical burrowing in granular media is a challenging endeavor due to the tendency for the media to create upwards resistive forces on an intruder, even during purely horizontal motions. Our robot is capable of vertically burrowing its body in granular substrate primarily through excavation using two leg pairs, which are functionally analogous to groupings of leg pairs of the mole crab. We implement a novel leg mechanism with a sweeping trajectory, using compliant fabric to enable an anisotropic force response. The maximum resistive force during the power stroke is 6.4 times that of the return stroke. We compare robot body pitch and spatial trajectories with results from biomechanical studies of the mole crabs. We characterize the sensitivity of the robot to initial depth, body pitch and leg pose, and propose bounds on initial conditions which predict various burrowing failure modes. Parametric studies utilizing Granular Resistive Force Theory inform our understanding of robot behavior in response to leg phasing and orientation. Not only does this robotic platform represent the first robophysical model of vertical mole crab-inspired burrowing, it is also one of the first legged, primarily excavative small-scale burrowing agents.

2.
Rep Prog Phys ; 79(11): 110001, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27652614

RESUMEN

Discovery of fundamental principles which govern and limit effective locomotion (self-propulsion) is of intellectual interest and practical importance. Human technology has created robotic moving systems that excel in movement on and within environments of societal interest: paved roads, open air and water. However, such devices cannot yet robustly and efficiently navigate (as animals do) the enormous diversity of natural environments which might be of future interest for autonomous robots; examples include vertical surfaces like trees and cliffs, heterogeneous ground like desert rubble and brush, turbulent flows found near seashores, and deformable/flowable substrates like sand, mud and soil. In this review we argue for the creation of a physics of moving systems-a 'locomotion robophysics'-which we define as the pursuit of principles of self-generated motion. Robophysics can provide an important intellectual complement to the discipline of robotics, largely the domain of researchers from engineering and computer science. The essential idea is that we must complement the study of complex robots in complex situations with systematic study of simplified robotic devices in controlled laboratory settings and in simplified theoretical models. We must thus use the methods of physics to examine both locomotor successes and failures using parameter space exploration, systematic control, and techniques from dynamical systems. Using examples from our and others' research, we will discuss how such robophysical studies have begun to aid engineers in the creation of devices that have begun to achieve life-like locomotor abilities on and within complex environments, have inspired interesting physics questions in low dimensional dynamical systems, geometric mechanics and soft matter physics, and have been useful to develop models for biological locomotion in complex terrain. The rapidly decreasing cost of constructing robot models with easy access to significant computational power bodes well for scientists and engineers to engage in a discipline which can readily integrate experiment, theory and computation.

3.
Science ; 353(6295): 154-8, 2016 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-27387947

RESUMEN

In the evolutionary transition from an aquatic to a terrestrial environment, early tetrapods faced the challenges of terrestrial locomotion on flowable substrates, such as sand and mud of variable stiffness and incline. The morphology and range of motion of appendages can be revealed in fossils; however, biological and robophysical studies of modern taxa have shown that movement on such substrates can be sensitive to small changes in appendage use. Using a biological model (the mudskipper), a physical robot model, granular drag measurements, and theoretical tools from geometric mechanics, we demonstrate how tail use can improve robustness to variable limb use and substrate conditions. We hypothesize that properly coordinated tail movements could have provided a substantial benefit for the earliest vertebrates to move on land.


Asunto(s)
Evolución Biológica , Locomoción , Modelos Biológicos , Robótica , Cola (estructura animal)/fisiología , Vertebrados/fisiología , Animales , Ambiente , Extremidades/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...